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Abstract

We consider a cave-in of the roof of an underground cavity which is a
cause of air blasts in mining operations. Four mathematical models are
proposed to describe the air pressure and air speed in the cavity. We
solve some of the models and put forward an appropriate composite
solution which can be used as the initial boundary value for a suggested
model for the air flow in tunnels connected to the cavity.

1 TIntroduction

In mining operations large excavations or cavities, connected to a network
of tunnels, often exist. Collapsing roofs cause high pressures. and/or wind
speeds (called air blasts) to be generated in connecting tunnels. These
air blasts are sufficient to overturn vehicles and cause major destruction
to infrastructure [4]. An understanding of the process may enable one to
modify the design of the tunnel system to mitigate the hazardous effects of
an air blast.
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The aims of the study group:

e To model the collapsing rock in the cavity in order to shed light on
the following:

— Understand the escape of air through the gaps between rock
blocks that make up the collapsing rock mass.

— In a piston model , give an idea of the effectiveness of the piston.
e To find a model that explains the air flow in the tunnels.

There is usually interconnection of underground excavations via tunnels,
shafts, etc to other underground excavations, with different surface rough-
nesses, and one or more connections to the surface (the atmosphere). The
rock collapse itself may result in a break through to the atmosphere.

In our analysis it is important to know whether or not we expect shock
waves in the cavity and/or the adjoining tunnels. The existence of shock
waves is connected to the wind speeds attained. If the speed of the air nears
the speed of sound in ambient conditions, cp = 331ms™!, then one expects
shock waves to form.

We consider first a cavity of depth 200 m where the roof collapses under
the influence of gravity. The movement of the roof is governed by Newton’s
second law of motion and thus

d?z
dt?
where z(t) is the position of the roof at time ¢ and g = 9.8m s~2 is the
acceleration due to the earth’s gravitational field. Integration of equation

(1) with initial condition dz/dt = 0 at t = 0 gives the speed of the roof as a
function of time,

=g, (1)

dz
= = gt. (2)
Since the air is pushed down by the collapsing roof, the speed of the air
should be in the order of gt. By integration of (2) with z(0) = 0 we find the
position of the roof as a function of time,

1
2(t) = 59t”. (3)
It follows that in a (typical) 200 m deep cavity the falling rock would hit

the bottom approximately 6 seconds after it started falling with a speed of
63 ms~—!. Therefore we can assume that no shock waves are formed in the
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cavity.

Next we consider the worst case scenario of a single tunnel connected to
the cavity. From a simple consideration of conservation of mass we see that
the speed of the air in the tunnel should be of the order of A/ao times the
speed of the air in the cavity. Here A is the (horizontal) cross section area
of the cavity a.nd ap is the cross section area of the tunnel. A typical value
for ag is 16 m? whereas A in open stopes can be 400 - 800 m?. Thus the air
could travel 25 to 50 times the speed reached in the cavity.

These numbers suggest subsonic flow within the cavity and supersomc
and/or subsonic flow in the adjoining tunnels (decaying shocks). This also
suggests that the cavity flow and the tunnel flow problems can be effectively
decoupled.

This work focuses on the solution of the cavity problem. Section 2
presents a range of mathematical models that model the pressure levels
to be expected in the cavity. The pressure in the cavity defines the pressure
at the tunnel entry points. These results may be used to determine the flow
into the tunnels. On the basis of the results obtained we suggest an appro-
priate model to describe the air flow in the connecting tunnels in the last
section, the conclusion. (The problem of determining air flow in the tunnels
will be addressed in the Proceedings of MISGSA 2006.)

In this report:

P, is atmospheric pressure (about 105 Pa). We assume that the air pressure
in the cavity before collapse is Fj.

P is the pressure in the cavity. In general it varies with time ¢ and position
£ measured downward from the roof of the cavity (before collapse).

P, is the pressure at the mouth of the tunnel.

A is the cross section area of the cavity which is assumed to be uniform in
this report.

L is the height of the cavity before collapse.

H is the height of the rock that collapses (before collapse).

The function z(t) is the position of the collapsing roof of the cavity at time
¢, not to be confused with the spatial variable z which is independent of the
variation in the position of the roof.

The volume of the cavity as a function of time is given by V'(t) and the
initial volume of the cavity is Vo = AL.
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2 Models of the rock collapse

In this section we present various models that model the collapse of the roof
in the cavity and the resultant air pressure and air speed. The falling roof
causes compression waves to propagate at speed cp into the cavity from the
moving roof. Such waves reach the floor after a time L/cy (1-2 seconds for
a typical L = 200m) and are reflected back towards the roof and thereafter
successive reflections lead to a more complex flow pattern. In Section 2.2
we use the one dimensional compressible flow equations to obtain results
that are useful for describing the flow field in the early stages. Whilst in
theory these results could be used to obtain results for longer time spans it is
sensible to filter out the small fluctuations associated with wave interactions
and look for a spatially uniform description of the flow field. This approach is
followed in Section2.1. This model is presented first because of its simplicity.
A useful composite description is thus obtained by combining the models in
Sections 2.1 and 2.2. These simple models assume the falling rock mass acts
like an impermeable piston. Evidently this is not the case in practice; gas
within the cavity initially will ”leak” through the falling rock and be forced
into the adjoining tunnels. We consider models that take the leakage into
account in Sections 2.3 and 2.4.

2.1 Model A: An impervious piston model

The simplest model for the collapse is that of a non-porous piston with no
friction. The rock falls as a solid mass under gravity. Thus from (3) the
position of the rock-face at time t after initiation is 2(t) = gt2/2. If the
total height of the cavity is L then 2 = 0 when £ = 0 and z = L after
the collapse, i.e. t = v/2L/g. In this model we assume uniform adiabatic
conditions within the cavity. Thus for a constant temperature T,

P)V7(t) =k, (4)

with v = 1.4, is considered a good approximation. In (4), k is a constant.

The volume at time ¢ = 0 is V(0) = Vp = LA and at any time ¢, ignoring
the leakage from the cavity into adjoining tunnels, V(t}) = A(L — z). As
previously mentioned we assume P(0) = Fy. Thus, from (4),

PV(t) = RVy.
It follows that

b
P(t):Pg (LTLL.;t—z) for 0<t<”2—g]:i+ (5)
2
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Consider a tunnel 4L from the top of the cavity. The rock reaches the
20L
tunnel at time ¢, when 6L = %— gt2 and thus te = % The pressure at the

mouth of the tunnel is therefore given by

I ¥
R(t)z-PO(Z-—_lgﬁ) for 0<t<1/?%-.
2

Once the rock face reaches the tunnel, the tunnel could be blocked off or,
after a while, be exposed to open air. The study group did not consider a
20L
R
What is important is that we have established an upper bound for F;(t),
namely P, = Pp/(1 — §)** when t = t.. Note that if the tunnel is near the
roof of the cavity (i.e. § < 1) the rise in pressure is small. Also note that,
because this model assumes no loss of gas either into the tunnels or through
the falling rock (an impervious piston) the pressure rise, according to (5),
becomes infinite in the cavity when the rock nears the bottom of the cavity.
Figure 2.1 shows the pressure P(t) in the cavity as a function of time in a
cavity of height 200m as determined by (5) for the simple piston model .

model for the pressure P;(t) at the mouth of the tunnel after . =

2.2 Model B: An impervious piston with isentropic com-
pressible flow

In this section we refine the simple piston model by the consideration of
isentropic compressible flow [5].
The one-dimensional gas dynamics equations are

pe+(pw)e = 0, (6)

1
U + Uz + ;Px = 0, (7)
P = kp. (8)

where p(z,t) is the air density, u(z,t) is the air speed, P(z,t) is the air
pressure at depth z and time ¢. The constant v = 1.4 for air. -We assume
that the air is stationary at time ¢ = 0. The appropriate initial conditions
are given by

P(z,0) = Py = kp} where p(z,0) = pg, u(z,0) =0, u(z(t),t)= j—: (9)
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Figure 1: Model A: Pressure in the cavity as a function of time for a cavity
with depth L = 200 m.
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Let ¢ = kyp?~!. Then

2cc; = k(v — 1)p" %o,
2cc; = ky(y — 1" *pr,

P, = c2pa,.
We multiply (6) and (7) by kyp?~1 and rewrite in terms of c:
¢t + ucy + (o ; 1) cuy =0, (10)
Ut + uly + h—;l—)ccm = 0. (11)

Thus multiplication of (11) by 2/(y — 1) and addition and subtraction of
(10) yield

0 ad 2c
(-6—t+(u+c)§£) (u+7_1)-—-0 (12)
and
7l 17} 2¢
(b—t+(u—c)5;) (u-7_1)_o, (13)
respectively.
The functions 0
Ry=ux :
v-—1

are the Riemann invariants of the system and are constant on the two sets
of characteristic curves, X (), where

dXy

dt

The characteristics X, are downward characteristics (moving with speed c)
and X_ are upward characteristics (moving with speed —c). We consider

characteristics that emanate from a point zg > 0 at time ¢ = 0. Thus from
the initial conditions (9) we have the Riemann invariants

utc

ux2¢/{y~1)=+2¢/(y—1) where 2 = k'ypo"l ;

It follows that u = 0 and ¢ = cp in the region where ever both of these sets
of characteristics (that started at ¢t = 0, zg) occur. Here dz/dt = +cg or
x = Zcgt + zo. Thus u = 0,¢ = ¢g for z > cgt. This is the region of silence.
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Now we consider z < cgt. In this region we still have upward character-
istics that started at t = 0, thus
2
2 = (14)

u_7—1=_'y-—1'

We also have downward characteristics. These characteristics start at the
moving rock face. As in Model A, we assume that the rock falls under the
influence of gravity only. Thus the downward characteristics emanate from
the rock face at time t = T at position z(7) = 2(7) = gr*/2. From the
initial condition (9) the fluid velocity at the rock face is u(z(t),t) = gt. The
characteristic curve is described by

dx/dt = u+c (15)

on which u + 2¢/(y — 1) is a constant. From this and (14) it follows that
u is the constant © = g7 on the downward characteristic curve that staris
at t = 7. It follows that u + ¢ is a constant on (15) and therefore we can
integrate (15) to find the characteristic curves

T = %g‘r2 + (u+c){t — 7).

We thus have the three equations

2c _ 2¢h
vy—=1~ 4=1

“— s= gl @t ot-7) u=gr,

which are solved for u,c and 7 explicitly:

_ (+) , o
u(z,t) = o gt o
o (v+1) \° 2 :
+ (—— t) — —(x —cot)| ,
[ Y 2y 7 7( )]
c = co+£'_7__—1)u,
2
U
T = E,

where 2gt° <z <cpt, 0<it< 1/2—9‘[-’.
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The line z = %gt2 represents the position of the rock fall and z = cot is
the line that separates the region of “silence”, where the air is not disturbed,
from the air that is disturbed. A shock could form at ¢ = ;—&—c_ﬂﬁ.

A point to reflect on is that at ¢ < L/cy the “leading characteristic”,
z = cgt, reaches the bottom of the cavern. Subsequently the disturbance
is reflected back up into the air which destroys the region of silence. The
consequence of this was not addressed by the study group and is left as an

open problem. |
The pressure in the cavity is found from c2 = kyp?~! and P = kp”; thus

2:
P(z,t) = 'ylﬁ-?kf'—l_'f ¢ T,

If v =1.4 then P o c'.
The pressure at the mouth of the tunnel is found if we set z = L where
6L is the distance from the roof of the cavern, before collapse, to the tunnel.

Thus _
P,(t) = P(SL,1).

Figure 2 presents the pressure P, for tunnels 20m, 60m, 80m and 100m
from the roof of a 200m high cavern. The disturbance reaches the floor
of the cavity when t = L/co and the reflection of the disturbance takes a
further time (L — 8L)/co to reach a tunnel at = dL. This wave model
is therefore the appropriate model for ¢ < (2 — §)L/co. Figure 3 shows the
accurate part of the solution presented in Figure 2. One can construct a
composite solution by considering Model A for ¢ > (2 — §)L/co. Figure 4
gives a graphical representation of such a composite solution.

The results from Model A is inaccurate for long time scales because of
the fact that air leakage out of the cavern was not considered. We can thus
better the composite model if we construct a model which takes the air
leakage into account. We endeavor to find such a model in the next two
subsections.

2.3 Model C: A porous piston

In this section we consider a porous rock piston under the influence of gravity
as well as a drag force and a force due to the pressure difference over the
piston. We assume the pressure above the piston to be Py, that is, the roof
collapses to open air.
From Newton’s second law of mechanics
d?z

M- = Mg — Fgrag — (P — Ry)A
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Figure 2: Model B: Pressure P(t) at the mouth of tunnels (from left to
right) 20, 40, 80 and 100 meter from the roof of a 200 m cavern.
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Figure 3: Model B: Accurate pressure P(t) at the mouth of tunnels (from
left to right) 20, 40, 80 and 100 meter from the roof of a 200 m cavern.
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t seconds
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Model B: 20m
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Figure 4: A composite solution from Model A for ¢ > (2—4)L/co and Model
B for t < (2—6)L/cp for tunnels 20 and 100 meter from the roof of a 200 m
cavern.
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where M is the mass of the rock that collapses, Mg is the force due to gravity,
Frag is a friction force and (P— Py)A is an upward force due to the pressure
difference. The distance from the roof before collapse to the position of the
roof at time t is z(t) and A is again the area of the roof. It should be
mentioned that one expects the drag effect as well as the cushion effect of
the pressure difference to be small compared to the effect of gravity but we
have no idea at this stage how small. If there is no drag or cushion effect
then the rocks can be assumed to fall freely under gravity as in Model A.
We now try to model the falling rock as a porous plug across which there
is a pressure drop and through which there is a flow of air which depletes the
mass of air trapped between the falling rock layer and the floor of the cavern.
The pressure drop and flow rate will be strongly dependent on the ‘average
gap thickness between rocks’ and thus the ratio (volume of rock)/(volume
occupied by rock) and the thickness H of the zone. Generally H will increase
as rock peals off from the roof and rocks accelerate, and then decrease as
the rock piles up on the floor. This scenario is taken into consideration in
Model D. However, here we consider a fixed thickness H. The flow through
such a large gap porous medium (with H as a constant) has been described
by use of the Ergun equation, a nonlinear extension of the Darcy’s law, see
2, 3],
P-F
H

In (16) v is the average velocity if the obstructing rock was not there,called
the fluid superficial velocity, the constants « and 3 are defined by

= fv + avlv|. (16)

o 1.75(1 — €)p

eD (17)
and ) ( )2
500(1 — ¢
B=—Fpz (18)

where the fluid density and viscosity are p and v, D is the rock diameter
and e the void fraction (volume of voids/total volume). Note the similarity
to the Bernoulli equation with a stagnation point.

Again, as with Model A, we assume for simplicity that the temperature
is constant. The mass of air in the cavity is then p(L — 2)A. The rate of
decrease of this mass is given by the mass-flow rate through the porous rock,
this rate being pvA. Thus, since the cross sectionsl area, A, of the cavity is
assumed constant,

5; (p(L = z)) =—pv.
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For adiabatic behaviour, P/p? is a constant and therefore

dP _ 4P (dz
E-L_z(a‘”)- (19)

The appropriate initial value problem for z, P and v is therefore

d?
M=% = Mg~ Fuag— (P~ R)A,
P;{P" = owlv| + B,

. (d_z__v)

dd =~ L-—z\dt ’

with p
20)=0, =(0)=0, P(0)=

The pressure at the mouth of the tunnel is P(t) = P(t) for 0 < t < t5 where
t; is the time when z = dL.

This initial value problem was not solved during the study group. (To
do so we would need information about D, H and e. It is left as an open
problem.)

2.4 Model D: Rock-rain

Here we consider the case where the rock breaks up and does not fall down
all at once. The air is assumed to escape through the falling rock to open air
where P = P, and v is again the fluid superficial velocity (average velocity
in the absence of the rock) of the escaping air. The case where the air can
not escape to open air is left as an open problem. Let the initial thickness
of the rock that falls down be H. Then the initial volume of the rock that
falls down is Vp = AH. The volume that the falling rock occupies at time ¢
is denoted by V(). Note that this is not in general the same as the volume
of the cavern V(t). A graphical representation is given in Figure 5.

The first column (a) in Figure 5 shows the rock at the top of the cavern,
occupying a volume V(0) = Vb = AH. In column (b) some of the rock has
started falling down. Thus V (¢) > Vo.

Column (c) shows a time after the first rocks have settled on the bottom,
but some of the rock is still falling, and in the last column, all the rock has
settled at the bottom.
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v F

(a () (© d)

Figure 5: Model D: The rock initially occupies volume Vp = AH. As time
progresses the rock spreads out and falls down until, at the end, it forms a
pile of rock with volume slightly larger than Vp (typically 1.2 to 1.6 times
Vo).
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We define V() as a parabola which goes through the following three
points: The initial point V(0) = V. The maximum point is chosen such the
first rocks hit the bottom when the last rocks start to fall, viz:

V(\/EE):AL,
g

which is the whole cavity. The final point is

‘7(2\/'—-2-—11 ' szo. :
g .

Since we have no data on how the rock falls in a specific rock fall, this crude
approximation will do as well as any other. Some studies can be done on
varying the form of V(¢).

Thus (~ AL)
oo _ (Vo—AL) 5 7 g
V() = 95—t ~2( - AL) 1/:,)anvo.
To simplify the equations, let H = 4L and thus Vo = §AL where § < 1.
Then (see Figure 5)
ve _ 6-1
AL ~ 9L
We consider the Ergun equation (16) as described in Model C. This

formula may be rewritten as

P — Py = (auju| + Bu)dL.

t2—(0-1) 2fgt+6.

where o and 8 as given in (17) and (18). Typical values of the density
and viscosity of air are p = 1.23 kg m™3 and v = 1.73 x 10~5N s m~2
Since € is the ratio of void space to total occupied space, € = 1 — V/V ()
which varies with time. However, ¢ is a constant in the Ergun equation and
substitution of this function gives a very strange result in which the pressure
is much larger than expected, so we will stay with a constant. Lastly D is
some characteristic size of the medium through which it is flowing, that is,
a typical diameter of a chunk of stone times the sphericity of the stones.
Stones may typically vary in size from relatively small pieces (less than half
a meter in diameter) to huge (larger than 6m in diameter) rocks. Some
research is therefore needed to find appropriate values for D and e.

To compensate for a constant ¢ we take into account that P — Py should
be inversely proportional to V(£) (the more the rock is spread out, the more
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air can escape, thus lowering the pressure difference). We further assume
that the rock falls through the air under the influence of gravity and that the
speed of the rock through the cavern (and the air) is roughly the speed of
the air through the rock {an assumption which of course is very inaccurate
if the pressure below the rock is much higher than the pressure above the
rock). Thus u =~ gt. Then

_ . \2
L75(1 —€)p 55, 150v(1~¢) gt) 9AL  p (20)

P | ———— .
( D ' T T 8D 70
The pressure at the mouth of the tunnel is therefore given by

- 1.75(1 - E)p 2,9 150”(1 - 6)2
Pt_( Sp It apE o)
20L +R
(96 — )2 —2(6 — 1) V2gLt + 26L) '~

for the time it takes for the rock to reach a tunnel 6L from the roof, that is
O<t= ‘/ 2—‘;-11, and P = P, when the rock has passed the opening, that is,

2L [25L
t> [ +4/—.
g g

This is a result of the assumption that the air escapes to open air (that is,
the roof caves in or at least has holes to the open air. The case where the
air does not escape to open air is not studied here.

Some research is also needed to model the pressure in the time that the
rock takes to pass the tunnel namely

[26L [2L  [25L
gty E Ay —.
g g g

Figure 7 is a graph of the pressure P in a cavity L = 200m deep as
defined in (20). Here € = 0.4,0.5,6 = 0.5,0.1, D = 1,0.6 are specified in the
legend.

3 Conclusions

All of the models in Section 2 give an estimate of the pressure at the tunnel
entrance from the start of the collapse to the point where the collapsing rock




Piston Effect due to Rock Collapse 35

10°
120

115+

P(t) Pascal 110

t seconds

2 0.4,0.5,0.6
e e 04,051

¢ 0.5,05,0.6
£ 05,051
i 0.4,0.1,06
&’ 0.4,0.1,1
£ 05,0.1,06
;%m —_—— 04,011
g :;;’-f'_

Figure 7: Mode! D: Pressure P(t) in a cavern, L = 200 m, for specified
values of void ratio e, initial rock volume & and rock size D (in that order).
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reaches the tunnel. The behaviour of the pressure after this event has not
been considered. It clearly depends on whether the cavity collapses to open
air, or not, among other factors. The pressure drop caused by the air that
escapes through the tunnel is not taken into account. The cross section area
of the tunnel is considered to be small. Figure 8 gives a comparison of the
pressure P; for some of the models discussed in Section 2.

Each of the models have weaknesses and strengths. The strength of
Model A is its simplicity. However the model predicts a large pressure rise
for tunnels near the bottom of the cavity. The accuracy of Model A when a
tunnel close to the floor of the cavity is considered, is debatable since it is
highly unlikely that the roof of the cavern will move down as a solid mass
with no air escaping. Model B does not take air leakage into account either,
but it is a better model than Model A initially. To obtain a result for longer
time scales is difficult, so a composite picture as obtained in Figure 4 is
suggested. Although we endeavoured to find a more accurate model that
takes into account that air escapes from the cavity during the rock collapse,
results obtained from Models C and D are useless until appropriate values for
the constants involved can be found. We expect however that the resultant
rise in air pressure in the cavity should be lower than those predicted in
Models A and B and therefore a composite picture from Models A and B,
can be seen as a worst case scenario. It is also the most useful (and accurate)
model at this stage.

The study group did not complete the study of the dynamics in the
tunnel and made the following comments. The results obtained in Section 2
show that the rise in pressure at the entrance of the tunnel is probably not
very large. Therefore we may assume the pressure at the mouth of the tunnel
to be of the form P = Py(1 —€p(t)), 0 < € < 1. A key modelling assumption
is that the tunnel is long enough for turbulent dissipation to be important.
The study group suggests the Fanno model for turbulent compressible flow
to study the dynamics in a tunnel which is described in [8]. If the Fanno
model gives good results, a Fanno network with branching and loops should
be studied.
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Figure 8: Comparison of Models A, B and D: Pressure P(t) at the mouth
of a tunnel 20 m from the roof of a 200 m deep cavern. For Model D, the
void ratio €, initial rock volume & and rock size D are given in that order.
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